\(\int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx\) [585]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 138 \[ \int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {5 a \text {arctanh}(\cos (c+d x))}{128 d}-\frac {a \cot ^7(c+d x)}{7 d}-\frac {a \cot ^9(c+d x)}{9 d}+\frac {5 a \cot (c+d x) \csc (c+d x)}{128 d}-\frac {5 a \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac {5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac {a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d} \]

[Out]

5/128*a*arctanh(cos(d*x+c))/d-1/7*a*cot(d*x+c)^7/d-1/9*a*cot(d*x+c)^9/d+5/128*a*cot(d*x+c)*csc(d*x+c)/d-5/64*a
*cot(d*x+c)*csc(d*x+c)^3/d+5/48*a*cot(d*x+c)^3*csc(d*x+c)^3/d-1/8*a*cot(d*x+c)^5*csc(d*x+c)^3/d

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2917, 2687, 14, 2691, 3853, 3855} \[ \int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {5 a \text {arctanh}(\cos (c+d x))}{128 d}-\frac {a \cot ^9(c+d x)}{9 d}-\frac {a \cot ^7(c+d x)}{7 d}-\frac {a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}+\frac {5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac {5 a \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac {5 a \cot (c+d x) \csc (c+d x)}{128 d} \]

[In]

Int[Cot[c + d*x]^6*Csc[c + d*x]^4*(a + a*Sin[c + d*x]),x]

[Out]

(5*a*ArcTanh[Cos[c + d*x]])/(128*d) - (a*Cot[c + d*x]^7)/(7*d) - (a*Cot[c + d*x]^9)/(9*d) + (5*a*Cot[c + d*x]*
Csc[c + d*x])/(128*d) - (5*a*Cot[c + d*x]*Csc[c + d*x]^3)/(64*d) + (5*a*Cot[c + d*x]^3*Csc[c + d*x]^3)/(48*d)
- (a*Cot[c + d*x]^5*Csc[c + d*x]^3)/(8*d)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2691

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
 f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[b^2*((n - 1)/(m + n - 1)), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \cot ^6(c+d x) \csc ^3(c+d x) \, dx+a \int \cot ^6(c+d x) \csc ^4(c+d x) \, dx \\ & = -\frac {a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}-\frac {1}{8} (5 a) \int \cot ^4(c+d x) \csc ^3(c+d x) \, dx+\frac {a \text {Subst}\left (\int x^6 \left (1+x^2\right ) \, dx,x,-\cot (c+d x)\right )}{d} \\ & = \frac {5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac {a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}+\frac {1}{16} (5 a) \int \cot ^2(c+d x) \csc ^3(c+d x) \, dx+\frac {a \text {Subst}\left (\int \left (x^6+x^8\right ) \, dx,x,-\cot (c+d x)\right )}{d} \\ & = -\frac {a \cot ^7(c+d x)}{7 d}-\frac {a \cot ^9(c+d x)}{9 d}-\frac {5 a \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac {5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac {a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}-\frac {1}{64} (5 a) \int \csc ^3(c+d x) \, dx \\ & = -\frac {a \cot ^7(c+d x)}{7 d}-\frac {a \cot ^9(c+d x)}{9 d}+\frac {5 a \cot (c+d x) \csc (c+d x)}{128 d}-\frac {5 a \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac {5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac {a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d}-\frac {1}{128} (5 a) \int \csc (c+d x) \, dx \\ & = \frac {5 a \text {arctanh}(\cos (c+d x))}{128 d}-\frac {a \cot ^7(c+d x)}{7 d}-\frac {a \cot ^9(c+d x)}{9 d}+\frac {5 a \cot (c+d x) \csc (c+d x)}{128 d}-\frac {5 a \cot (c+d x) \csc ^3(c+d x)}{64 d}+\frac {5 a \cot ^3(c+d x) \csc ^3(c+d x)}{48 d}-\frac {a \cot ^5(c+d x) \csc ^3(c+d x)}{8 d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(301\) vs. \(2(138)=276\).

Time = 0.19 (sec) , antiderivative size = 301, normalized size of antiderivative = 2.18 \[ \int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {2 a \cot (c+d x)}{63 d}+\frac {5 a \csc ^2\left (\frac {1}{2} (c+d x)\right )}{512 d}-\frac {15 a \csc ^4\left (\frac {1}{2} (c+d x)\right )}{1024 d}+\frac {7 a \csc ^6\left (\frac {1}{2} (c+d x)\right )}{1536 d}-\frac {a \csc ^8\left (\frac {1}{2} (c+d x)\right )}{2048 d}+\frac {a \cot (c+d x) \csc ^2(c+d x)}{63 d}-\frac {5 a \cot (c+d x) \csc ^4(c+d x)}{21 d}+\frac {19 a \cot (c+d x) \csc ^6(c+d x)}{63 d}-\frac {a \cot (c+d x) \csc ^8(c+d x)}{9 d}+\frac {5 a \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )}{128 d}-\frac {5 a \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{128 d}-\frac {5 a \sec ^2\left (\frac {1}{2} (c+d x)\right )}{512 d}+\frac {15 a \sec ^4\left (\frac {1}{2} (c+d x)\right )}{1024 d}-\frac {7 a \sec ^6\left (\frac {1}{2} (c+d x)\right )}{1536 d}+\frac {a \sec ^8\left (\frac {1}{2} (c+d x)\right )}{2048 d} \]

[In]

Integrate[Cot[c + d*x]^6*Csc[c + d*x]^4*(a + a*Sin[c + d*x]),x]

[Out]

(2*a*Cot[c + d*x])/(63*d) + (5*a*Csc[(c + d*x)/2]^2)/(512*d) - (15*a*Csc[(c + d*x)/2]^4)/(1024*d) + (7*a*Csc[(
c + d*x)/2]^6)/(1536*d) - (a*Csc[(c + d*x)/2]^8)/(2048*d) + (a*Cot[c + d*x]*Csc[c + d*x]^2)/(63*d) - (5*a*Cot[
c + d*x]*Csc[c + d*x]^4)/(21*d) + (19*a*Cot[c + d*x]*Csc[c + d*x]^6)/(63*d) - (a*Cot[c + d*x]*Csc[c + d*x]^8)/
(9*d) + (5*a*Log[Cos[(c + d*x)/2]])/(128*d) - (5*a*Log[Sin[(c + d*x)/2]])/(128*d) - (5*a*Sec[(c + d*x)/2]^2)/(
512*d) + (15*a*Sec[(c + d*x)/2]^4)/(1024*d) - (7*a*Sec[(c + d*x)/2]^6)/(1536*d) + (a*Sec[(c + d*x)/2]^8)/(2048
*d)

Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.20

method result size
derivativedivides \(\frac {a \left (-\frac {\cos ^{7}\left (d x +c \right )}{8 \sin \left (d x +c \right )^{8}}-\frac {\cos ^{7}\left (d x +c \right )}{48 \sin \left (d x +c \right )^{6}}+\frac {\cos ^{7}\left (d x +c \right )}{192 \sin \left (d x +c \right )^{4}}-\frac {\cos ^{7}\left (d x +c \right )}{128 \sin \left (d x +c \right )^{2}}-\frac {\left (\cos ^{5}\left (d x +c \right )\right )}{128}-\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{384}-\frac {5 \cos \left (d x +c \right )}{128}-\frac {5 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{128}\right )+a \left (-\frac {\cos ^{7}\left (d x +c \right )}{9 \sin \left (d x +c \right )^{9}}-\frac {2 \left (\cos ^{7}\left (d x +c \right )\right )}{63 \sin \left (d x +c \right )^{7}}\right )}{d}\) \(166\)
default \(\frac {a \left (-\frac {\cos ^{7}\left (d x +c \right )}{8 \sin \left (d x +c \right )^{8}}-\frac {\cos ^{7}\left (d x +c \right )}{48 \sin \left (d x +c \right )^{6}}+\frac {\cos ^{7}\left (d x +c \right )}{192 \sin \left (d x +c \right )^{4}}-\frac {\cos ^{7}\left (d x +c \right )}{128 \sin \left (d x +c \right )^{2}}-\frac {\left (\cos ^{5}\left (d x +c \right )\right )}{128}-\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{384}-\frac {5 \cos \left (d x +c \right )}{128}-\frac {5 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{128}\right )+a \left (-\frac {\cos ^{7}\left (d x +c \right )}{9 \sin \left (d x +c \right )^{9}}-\frac {2 \left (\cos ^{7}\left (d x +c \right )\right )}{63 \sin \left (d x +c \right )^{7}}\right )}{d}\) \(166\)
parallelrisch \(-\frac {\left (180 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\cot ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {9 \left (\cot ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}-\frac {27 \left (\cot ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}-12 \left (\cot ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+18 \left (\cot ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 \left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+36 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-54 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )-\left (-54+24 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+18 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {27 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7}+\frac {9 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )+36 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a}{4608 d}\) \(220\)
risch \(-\frac {a \left (315 \,{\mathrm e}^{17 i \left (d x +c \right )}+80640 i {\mathrm e}^{10 i \left (d x +c \right )}+8022 \,{\mathrm e}^{15 i \left (d x +c \right )}+16128 i {\mathrm e}^{14 i \left (d x +c \right )}+10458 \,{\mathrm e}^{13 i \left (d x +c \right )}+6912 i {\mathrm e}^{4 i \left (d x +c \right )}+18270 \,{\mathrm e}^{11 i \left (d x +c \right )}+48384 i {\mathrm e}^{8 i \left (d x +c \right )}+2304 i {\mathrm e}^{2 i \left (d x +c \right )}-18270 \,{\mathrm e}^{7 i \left (d x +c \right )}+48384 i {\mathrm e}^{6 i \left (d x +c \right )}-10458 \,{\mathrm e}^{5 i \left (d x +c \right )}+26880 i {\mathrm e}^{12 i \left (d x +c \right )}-8022 \,{\mathrm e}^{3 i \left (d x +c \right )}-256 i-315 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{4032 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{9}}+\frac {5 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{128 d}-\frac {5 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{128 d}\) \(232\)

[In]

int(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*(-1/8/sin(d*x+c)^8*cos(d*x+c)^7-1/48/sin(d*x+c)^6*cos(d*x+c)^7+1/192/sin(d*x+c)^4*cos(d*x+c)^7-1/128/si
n(d*x+c)^2*cos(d*x+c)^7-1/128*cos(d*x+c)^5-5/384*cos(d*x+c)^3-5/128*cos(d*x+c)-5/128*ln(csc(d*x+c)-cot(d*x+c))
)+a*(-1/9/sin(d*x+c)^9*cos(d*x+c)^7-2/63/sin(d*x+c)^7*cos(d*x+c)^7))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 259 vs. \(2 (124) = 248\).

Time = 0.27 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.88 \[ \int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {512 \, a \cos \left (d x + c\right )^{9} - 2304 \, a \cos \left (d x + c\right )^{7} + 315 \, {\left (a \cos \left (d x + c\right )^{8} - 4 \, a \cos \left (d x + c\right )^{6} + 6 \, a \cos \left (d x + c\right )^{4} - 4 \, a \cos \left (d x + c\right )^{2} + a\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 315 \, {\left (a \cos \left (d x + c\right )^{8} - 4 \, a \cos \left (d x + c\right )^{6} + 6 \, a \cos \left (d x + c\right )^{4} - 4 \, a \cos \left (d x + c\right )^{2} + a\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 42 \, {\left (15 \, a \cos \left (d x + c\right )^{7} + 73 \, a \cos \left (d x + c\right )^{5} - 55 \, a \cos \left (d x + c\right )^{3} + 15 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{16128 \, {\left (d \cos \left (d x + c\right )^{8} - 4 \, d \cos \left (d x + c\right )^{6} + 6 \, d \cos \left (d x + c\right )^{4} - 4 \, d \cos \left (d x + c\right )^{2} + d\right )} \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/16128*(512*a*cos(d*x + c)^9 - 2304*a*cos(d*x + c)^7 + 315*(a*cos(d*x + c)^8 - 4*a*cos(d*x + c)^6 + 6*a*cos(d
*x + c)^4 - 4*a*cos(d*x + c)^2 + a)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 315*(a*cos(d*x + c)^8 - 4*a*cos
(d*x + c)^6 + 6*a*cos(d*x + c)^4 - 4*a*cos(d*x + c)^2 + a)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 42*(15*
a*cos(d*x + c)^7 + 73*a*cos(d*x + c)^5 - 55*a*cos(d*x + c)^3 + 15*a*cos(d*x + c))*sin(d*x + c))/((d*cos(d*x +
c)^8 - 4*d*cos(d*x + c)^6 + 6*d*cos(d*x + c)^4 - 4*d*cos(d*x + c)^2 + d)*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**10*(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.00 \[ \int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {21 \, a {\left (\frac {2 \, {\left (15 \, \cos \left (d x + c\right )^{7} + 73 \, \cos \left (d x + c\right )^{5} - 55 \, \cos \left (d x + c\right )^{3} + 15 \, \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{8} - 4 \, \cos \left (d x + c\right )^{6} + 6 \, \cos \left (d x + c\right )^{4} - 4 \, \cos \left (d x + c\right )^{2} + 1} - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + \frac {256 \, {\left (9 \, \tan \left (d x + c\right )^{2} + 7\right )} a}{\tan \left (d x + c\right )^{9}}}{16128 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/16128*(21*a*(2*(15*cos(d*x + c)^7 + 73*cos(d*x + c)^5 - 55*cos(d*x + c)^3 + 15*cos(d*x + c))/(cos(d*x + c)^
8 - 4*cos(d*x + c)^6 + 6*cos(d*x + c)^4 - 4*cos(d*x + c)^2 + 1) - 15*log(cos(d*x + c) + 1) + 15*log(cos(d*x +
c) - 1)) + 256*(9*tan(d*x + c)^2 + 7)*a/tan(d*x + c)^9)/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 256 vs. \(2 (124) = 248\).

Time = 0.38 (sec) , antiderivative size = 256, normalized size of antiderivative = 1.86 \[ \int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {28 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 63 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} - 108 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 336 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 504 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 672 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 1008 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 5040 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - 1512 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {14258 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 1512 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} - 1008 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 672 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 504 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 336 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 108 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 63 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 28 \, a}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9}}}{129024 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/129024*(28*a*tan(1/2*d*x + 1/2*c)^9 + 63*a*tan(1/2*d*x + 1/2*c)^8 - 108*a*tan(1/2*d*x + 1/2*c)^7 - 336*a*tan
(1/2*d*x + 1/2*c)^6 + 504*a*tan(1/2*d*x + 1/2*c)^4 + 672*a*tan(1/2*d*x + 1/2*c)^3 + 1008*a*tan(1/2*d*x + 1/2*c
)^2 - 5040*a*log(abs(tan(1/2*d*x + 1/2*c))) - 1512*a*tan(1/2*d*x + 1/2*c) + (14258*a*tan(1/2*d*x + 1/2*c)^9 +
1512*a*tan(1/2*d*x + 1/2*c)^8 - 1008*a*tan(1/2*d*x + 1/2*c)^7 - 672*a*tan(1/2*d*x + 1/2*c)^6 - 504*a*tan(1/2*d
*x + 1/2*c)^5 + 336*a*tan(1/2*d*x + 1/2*c)^3 + 108*a*tan(1/2*d*x + 1/2*c)^2 - 63*a*tan(1/2*d*x + 1/2*c) - 28*a
)/tan(1/2*d*x + 1/2*c)^9)/d

Mupad [B] (verification not implemented)

Time = 10.41 (sec) , antiderivative size = 285, normalized size of antiderivative = 2.07 \[ \int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {3\,a\,\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{256\,d}-\frac {3\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{256\,d}-\frac {a\,{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{128\,d}-\frac {a\,{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{192\,d}-\frac {a\,{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{256\,d}+\frac {a\,{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{384\,d}+\frac {3\,a\,{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{3584\,d}-\frac {a\,{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{2048\,d}-\frac {a\,{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{4608\,d}+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{128\,d}+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{192\,d}+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{256\,d}-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{384\,d}-\frac {3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{3584\,d}+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{2048\,d}+\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{4608\,d}-\frac {5\,a\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{128\,d} \]

[In]

int((cos(c + d*x)^6*(a + a*sin(c + d*x)))/sin(c + d*x)^10,x)

[Out]

(3*a*cot(c/2 + (d*x)/2))/(256*d) - (3*a*tan(c/2 + (d*x)/2))/(256*d) - (a*cot(c/2 + (d*x)/2)^2)/(128*d) - (a*co
t(c/2 + (d*x)/2)^3)/(192*d) - (a*cot(c/2 + (d*x)/2)^4)/(256*d) + (a*cot(c/2 + (d*x)/2)^6)/(384*d) + (3*a*cot(c
/2 + (d*x)/2)^7)/(3584*d) - (a*cot(c/2 + (d*x)/2)^8)/(2048*d) - (a*cot(c/2 + (d*x)/2)^9)/(4608*d) + (a*tan(c/2
 + (d*x)/2)^2)/(128*d) + (a*tan(c/2 + (d*x)/2)^3)/(192*d) + (a*tan(c/2 + (d*x)/2)^4)/(256*d) - (a*tan(c/2 + (d
*x)/2)^6)/(384*d) - (3*a*tan(c/2 + (d*x)/2)^7)/(3584*d) + (a*tan(c/2 + (d*x)/2)^8)/(2048*d) + (a*tan(c/2 + (d*
x)/2)^9)/(4608*d) - (5*a*log(tan(c/2 + (d*x)/2)))/(128*d)